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Abstract 

Approximate methods have been examined in the con- 
text of dynamical reflection high-energy electron diffrac- 
tion (RHEED) calculations using two-dimensional Bloch 
waves. These approximate methods include Bethe poten- 
tials, the utilization of the block structure of the scatter- 
ing matrix and the perturbation treatment of anomalous 
absorption effects. It is shown that the use of Bethe 
potentials provides a very efficient and accurate means 
for dealing with evanescent waves and numerical ex- 
amples show that the use of Bethe potentials speeds 
up the calculations typically more than 15 times. The 
other two methods examined are less powerful and the 
improvement in computation efficiency varies from 30 to 
60%. It is found that in general the perturbation method 
for dealing with anomalous absorption effects does not 
work with high precision. 

1. Introduction 

The technique of reflection high-energy electron diffrac- 
tion (RHEED) utilizes high-energy electrons (roughly 
from 10 to 100 keV) and small-angle diffraction geom- 
etry. The latter makes it an ideal technique for com- 
bination with molecular-beam epitaxial (MBE) growth 
techniques for surface and growth studies (Larsen & 
Dobson, 1988; Cohen & Ichimiya, 1993). The use of 
high-energy electrons, on the other hand, simplifies 
the theoretical treatment of the diffraction processes. 
This is because for high-energy electron diffraction the 
complicated exchange and correlation effects (see, for 
example, Pendry, 1974) are negligible and the movement 
of high-energy electrons in a solid is basically governed 
by the electrostatic potential between the high-energy 
electrons and the electrons and nuclei of the solid. 

Various methods have been proposed for calculating 
dynamical RHEED intensities and analysing experimen- 
tal diffraction data (Maksym & Beeby, 1981; Ichimiya, 
1983; Peng & Cowley, 1986, 1988; Zhao, Poon& Tong, 
1988; Smith & Lynch, 1988; Meyer-Ehrnsen, 1989; Peng 
& Whelan, 1990). Formally, it can be shown that these 
different methods are equivalent. A round-robin exercise 
of RHEED calculations has also been organized by 
Professor A. Ichimiya in order to compare numerical 
results from major groups around the world. The first 
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exercise revealed that the results of Dudarev, Korte, 
Maksym and Peng are nearly identical (Ichimiya, 1996). 
A second exercise is under way in order to determine 
the origin of discrepancies between calculations by these 
authors and other groups. 

All RHEED theories, except the one by Peng & 
Cowley (1986, 1988), divide the crystal into slices 
parallel to the surface. With the assumption of a two- 
dimensional periodicity of the crystal parallel to the 
surface, the task of performing dynamical RHEED cal- 
culations is then reduced to a problem of solving a set 
of second-order differential equations (Tournarie, 1962). 
These second-order differential equations can be trans- 
formed into first-order coupled differential and integral 
equations (Maksym & Beeby, 1981) or simply into first- 
order non-linear differential equations (Meyer-Ehmsen, 
1989; Dudarev & Whelan, 1994) and numerical routines 
are available for solving these first-order differential 
equations. Alternatively, dynamical RHEED theory can 
be formulated as an eigenvalue problem (Lynch & 
Moodie, 1972; Ichimiya, 1983; Zhao et al., 1988; Peng 
& Whelan, 1990). 

The dependence of dynamical RHEED calculations 
on the number of beams used has been examined by 
Zhao & Tong (1988). These authors emphasized the 
importance of both the propagating and the evanescent 
higher-order Lane-zone (HOLZ) beams in dynamical 
RHEED calculations, and concluded that to achieve a 
convergent result 60 rods are needed for simple unrecon- 
structed surfaces. For more complicated reconstructed 
surfaces, this requirement excludes most researchers 
from performing reliable dynamical RHEED calcula- 
tions except those who have access to supercomputers. 

It is the aim of this paper to examine some ap- 
proximate methods and their implications for dynamical 
RHEED calculations. In particular, we focus our at- 
tention on the so-called Bethe-potentials method, by 
which the number of rods that need to be included 
in RHEED calculations can be substantially reduced. 
We found that the incorporation of Bethe potentials 
(Bethe, 1928) in our Bloch-wave approach improves the 
computation efficiency typically more than 15 times. In 
a separate paper (Peng, Dudarev & Whelan, 1996), we 
have shown that the use of Bethe potentials not only 
speeds up numerical computations but also leads to a 
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convergent method for dynamical RHEED calculation 
from the surface of a semi-infinite crystal. 

In some theories of RHEED, the effect of absorption 
has been treated using a perturbation method, see e.g. 
Ichimiya (1983). In this paper, we will show that, 
although the perturbation treatment of absorption effects 
speeds up the calculations typically by 30%, this method 
is not very accurate. Some discrepancies found during 
the first round robin of RHEED calculations may result 
from the use of the perturbation treatment of the ab- 
sorption effects. In this paper, we have also examined 
the use of the block structure of the scattering matrix 
for a reconstructed surface. For a simple Si (001) 2 x 1 
surface, we found the method speeds up computation 
typically by 60%. For more complicated surfaces, such 
as the Si (111) 7 x 7 and GaAs (110) 2 × 4 surfaces, 
further improvement in the computation efficiency may 
be expected. 

2. Basic relations and two-dimensional  Bloch waves 

Following Bethe (1928), we start our discussion from the 
well known dispersion equation of the dynamical theory 
of electron diffraction 

[K 2 - (k + g)2]Cg + ~ g  Ug_hC h = O, (1) 

where K is the electron wave vector derived from the 
incident electron wave vector X after correction for the 
mean inner potential, i.e. K 2 = X 2 + U o. Ug and Cg are 
defined respectively by the Fourier and Bloch-function 
expansions of the crystal potential 

U(r) = ~ Ug exp(ig, r), (2) 
g 

and wave function 

~b(r) = ~ C exp[i(k + g).  r], (3) 
g 

where g denotes a vector of the three-dimensional re- 
ciprocal lattice. 

By introducing a parameter 7 defined by 

k = K + 7n, (4) 

where n is a unit vector pointing toward the crystal 
(along the positive z direction), the dispersion equations 
(1) can be reduced to 

[-r 2 + 2(I  + g)z  - 2 m ] c  - a = o, (5) 

where Sg is the excitation error for reflection g given by 

sg = [K 2 - (K + g)2]/2K. (6) 

In RHEED, an incident beam of electrons, typically 
of order 10 to 100keV, is incident at a surface of 

a crystal at a glancing angle of a few degrees. The 
arrangement of atoms in the surface region may differ 
from that in the bulk. In general, the surface structure is 
two-dimensionally periodic in the plane parallel to the 
surface. The potential variation along the surface normal 
or z direction is modelled by dividing the crystal into 
many thin slices parallel to the surface, and assuming 
that within each slice the potential is two-dimensionally 
periodic parallel to the surface and constant normal to the 
surface. Since the potential field in each slice is constant 
along the z direction, only zero-order Laue-zone (ZOLZ) 
reflections with gz = 0 need to be included in (2) and 
(3). ff the two-dimensional reciprocal-lattice vectors of 
the surface periodicity are denoted by G = (G;  Gy), 
then within a thin slice situated at coordinate z (1) leads 
directly to 

{(7 + r z )  2 - [ K2 - (Kt + G)2]}Co 

- E = o, 
H:pG 

(7) 

in which the subscript t denotes the tangential component 
K t = (K;  K )  of K in the plane parallel to the surface. 
By the introduction of two new parameters 

E = 7 + K ;  /-2 = K2 - (Kt + G)2, 

(7) can be expressed as 

_ r )c G _ E v G _ H ( z ) C , ,  : 0. (8) 
H#G 

This equation is an eigenvalue equation for KS 2. If n 
reciprocal-lattice rods are included, this equation will 
yield 2n distinct eigenvalues 

JC(1) ,  JC(2) . . . . .  ]C (n), _ 1(7 (1), _ K~(2) . . . . .  - KT(n), 

n independent eigenvectors C~ ) (i = 1, . . . ,  n) and 2n 
distinct two-dimensional Bloch waves 

b(J)(x, z) = ~ Cff) exp[i(K t + G) .  x +//CO)z], (9) 
G 

where we have used the notation r = (x, z). 

3. The optical potential 

For a three-dimensional periodic potential, the Fourier 
coefficients of the scaled potential U(r) that appear in 
(1) are given by 

Ug -- (47r/V )(m/mo) ~_,fi(s) exp(-Bis2 ) exp(- ig-  ri), 
i 

(10) 

in which V is the volume of the crystal unit cell, f/(g) 
is the atomic scattering factor for the ith atom, the 
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summation over i is taken over all atoms within the unit 
cell, B is the usual Debye-Waller factor and s = g/(47r). 
For a recent tabulation of the Debye-Waller factors of 
elemental crystals, see Peng, Ren, Dudarev & Whelan 
(1996a). 

The effects of inelastic scattering upon the elastically 
scattered electrons may be represented by regarding the 
interaction potential between the incident electron and 
the crystal as being complex. For high-energy electron 
diffraction and to a good approximation, the collective 
electronic excitations contribute mainly to the imaginary 
part of the mean inner potential U 0 (Yoshioka, 1957; 
Whelan, 1965a), while the dominant contributions to the 
imaginary part of all other U e come from thermal diffuse 
scattering (TDS) (Yoshioka & Kainuma, 1962; Whelan, 
1965b; Hall & Hirsch, 1965; Bird & King, 1990). In 
our calculations, the mean absorption is treated as a free 
parameter, and when appropriate Radi's (1970) values 
are used. The complex Fourier coefficients Ug for all 
other reflections are calculated using the parameteriza- 
tion procedure of Dudarev, Peng & Whelan (1995) and 
Peng, Ren, Dudarev & Whelan (1996a,b), in which both 
the real and the imaginary parts of the scattering factors 
have been approximated using a set of fitting parameters 
a i and b i as  follows: 

f(s) = £ aiexp(-bis2 ). (11) 
i=I  

It should be noted that the coefficients tabulated in Peng 
et al. (1996a) were calculated for 100 keV electrons. For 
any other primary-beam energy E, these coefficients can 
be converted appropriately using the formula given in 
Peng et al. (1996a,b). 

The variation with z of the two-dimensional Fourier 
coefficients Uc(z ) is calculated from the Fourier series 

Potential distribution for Ag, 20 keV 
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Potential distribution for Ag, 20 keV 

Uc(z ) -- ~ Uo.g z exp(igzZ ). (12) 
gz 0.0 

To model the potential variation across the selvedge _ _  ~,~ 
where only the two-dimensional periodicity parallel ._.-20.0 
to the surface remains, we construct an artificial unit 
cell having a large dimension normal to the surface. 

-40.0 To illustrate this procedure, we consider the case of ~2 
an Ag(001) surface as an example. Ag has the f.c.c. 
structure with lattice constant a 0 - 4 . 0 9 / ~  and four 
atoms within the conventional unit cell. The fractional -6o.o 
atomic coordinates for the four atoms are: (0, 0, 1/4), 
(1 /2 ,1 /2 ,1 /4) ,  (1 /2 ,0 ,3 /4)  and (0 ,1 /2 ,3 /4) .  To - 8 0 . 0 1 -  
simulate the potential variation from the substrate 
to the vacuum, a large unit cell with the following 
lattice parameters is constructed: a - a 0, b -- a 0, 
c -  4a 0. Eight Ag atoms are placed in the large unit 
cell, with fractional atomic coordinates: (0,0,5/16),  
(1/2, 1/2, 5/16), (1/2, 0, 7/16), (0, 1/2, 7/16), 
(0,0,9/16),  (1 /2 ,1 /2 ,9 /16) ,  (1 /2 ,0 ,11/16)  and 

- - Realpart \ ~I //-x\ ~t / / ~  V / ~  

0.0 5.0 10.0 
z (hngstrrm) 

(c) 
Fig. 1. Real and imaginary parts of the optical potential Uo(z) for 

(a) a perfect bulk Ag single-crystal unit cell, (b) the artificial large 
unit cell described in the text and (c) the combination of (a) and 
(b) to simulate the selvedge. The z direction is along [001] and the 
incident-beam energy is 20 keV. 
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(0, 1/2, 11/16). Fig. 1 shows Uo(z ) (a) for the perfect 
bulk Ag single crystal and (b) for the artificial crystal 
with the large unit cell. It is seen from Fig. l(b) that 
near the middle of the unit cell the potential is very 
close to the bulk value of Fig. l(a). On the other hand, 
to the left of Fig. l(b), a smooth potential variation 
from free space to the crystal is clearly reproduced. 
By combining half the curve of Fig. l(b) with the 
bulk curve of Fig. l(a), we then obtain the potential 
(Fig. lc) that is appropriate for dynamical RHEED 
calculations. It should be noted that in Fig. l(c) the 
continuously varying potential has been replaced by 
a stepped function in accordance with the assumption 
from which (7) and (8) are derived and that a variable 
sampling rate over the potential distribution is possible, 
as can be seen in Fig. 1(c). 

Alternatively, U~(z) can be calculated explicitly us- 
ing the fitting parameters a i and b i (see, for example, 
Appendix B of Peng, 1994): 

Va(z) = (47rh 2/S0n o) ~ ,  exp( - iG-  x,) 
n.i 

(Re) [71" / [ b (Re) 1/2 
X {•i,n [ / \ i,n "at- Bn)] 

x exp[-(b~ RO + Bn)G2/(41r) 2 
_ 41r2(z _ x2HLCRe) -- Zn) /kVi,n + Bn)] 

-t- ia(Im)[Tr/(b (Im> d- Bn)] 1/2 
i,n i,n 

× exp[-(b ? m) + 

47r2(z _ ~2/r~(xm) 
_ - an ) i k u i , n  + Bn)]}, (13) 

in which the summation over n is carded out over all 
atoms belonging to a surface unit cell and S O denotes 
the area of the unit cell. 

given by 

2n 
~b~(z) = i ~ aO)ICO)C~) exp(ilC(J)z). (16) 

j----1 

We now define a vector • as follows: 

• '(z) : ( {%(z)} 
{-i~b~(z) } ) 

j=l  . 

[ j= l  

(17) 

In matrix notation, the above expression can be writ- 
ten in a more compact form (Peng & Whelan, 1990): 

@(z) = CT(z)o~, (18) 

where T(z) is a 2n x 2n diagonal matrix with {T}i  i = 
exp(ilC(Oz) ' {T}i+n,i+n = exp(-ilCCi)z) (i = 1, . . . ' ,n)  
and 

C = ({~(Cc(G}/)} { _(~C((i~(Gi) } ) 

is a general 2n x 2n matrix and ct is a 2n-dimensional 
vector with elements {o~}i = oL (i). 

If  z t and z b are the coordinates of the top and bottom 
surfaces of the slice, then from (18) we have 

l~(Zt  ) - -  CT(zt)(3t , 

which gives 

4. Dynamical RHEED calculations 
using two-dimensional Bloch waves 

In terms of two-dimensional Bloch waves, the total wave 
function within a slice that has a constant potential 
normal to the surface is given by 

2n 
¢(r)  = ~ a0~b~J)(x,z) 

j=l 
= exp(iK t • x) E ~bG(Z) exp(iG • x), 

G 
(14) 

where a09 is the Bloch-wave excitation amplitude of 
the jth Bloch wave and ~.,c(z) is the diffracted-beam 

amplitude associated with the Gth rod of the reciprocal 
lattice and is given by 

2n 
~b6(z) = ~_~ a03C~) exp(i/C(J)z). (15) 

j=l 

The first-order surface-normal derivative of ~bG(z ) is 

Og : T ( - z t ) C - l l t ~ ( z t ) .  (19) 

Substituting (19) into (18), we obtain an expression 
relating the vectors • at the top and bottom surfaces of 
a thin slice: 

~(Zb ) -- MlIl(zt) , (20) 

in which the matrix M is called the scattering matrix 
following the convention of high-energy electron diffrac- 
tion (Sturkey, 1962). If we use a set of integers k to index 
the thin slices, the scattering matrix for the kth thin slice 
is given by 

Mk(tk) = CkTk(tk)C~. 1, (21) 

t k being the thickness of the kth slice. 
We now consider a general diffraction problem as 

shown schematically in Fig. 2. Since the vacuum region 
above the upper surface contains only the incident and 
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reflected beams, the wave function will be of the form 

~tVpper(r) -- ~--~ {£Z-+ exp(ikG,zZ ) + ~Gexp(-- ikG,zZ)} 
G 
x exp(ikG, t • x), (22) 

in which Z + and 7~ 6 represent the incident- and the 
reflected-beam amplitudes associated with the Gth 
reciprocal-lattice rod, respectively. 

At the upper surface (z = 0), where the origin lies, 
we have 

= ({{%(0)} 
-i~bb (0) } ) 

= I,{k ,z(Zg - r%)}) 
/ I + + R  ) ,  

: ~P(I + - R) 

where the matrix P is a diagonal matrix with PGG = kG~" 
In the vacuum region below the lower face of the last 

slice, the wave function is given by 

k['lVwer(r ) = }--]~{2" G exp(--ikG,zZ ) + 7"Gexp(ikG,zZ)} 
G 
X exp[i(kG, t • r)], (23) 

where 27~ and T G are the Gth incident- and reflected- 
beam amplitudes from below the crystal slab, respec- 
tively. At the exit face, 

( t ) =  ( { ~ G ( t ) } )  { Q T +  Q - 1 I -  ) 
\{ -hbb( t )}  = ~ P ( Q T -  Q - 1 I - )  ' 

in which Q is a diagonal matrix with QG6 = exp(ikG zt) • 
The wave vectors of the reflected beams are givei{ by 

kG, t = Xt -~- G; ka, z = - - n ( x  2 -- k2,t) I/2. (24) 

The reflected-beam amplitudes {~-G} can be calcu- 
lated for I -  - -0  by propagating an R matrix relating 

I + R 

I- T 

Fig. 2. Schematic diagram showing the diffraction geometry where 
the column vectors I + and I -  are incident on the crystal slab from 
above and below the slab and are reflected giving column vectors 
R and T for the top and bottom faces of the slab, respectively. 

{~bG(z)} and {~bb(z)} through the crystal (Ichimiya, 
1983; Zhao et al., 1988). Assuming our model system 
consists of a total of m repeating bulk unit slabs and the 
selvedge, then starting from the bottom face of the bulk 
slab, we have 

where 

( M l l  M12 ~ - 1 (  Q(t)T "~ 
~(Zm -1) ~ki21 M22 ] m \PQ( t )T  ] 

_ (M' I + M'I P  
(Q(t) T), 

-- ~kM21 71- M22P / m 
(25) 

M'm = M-lrn = Cm'r(-t)C~n 1. (26) 
Letting 

R m = (M~I + M~2P)m(MI11 + MI12P)m 1, (27) 

we obtain from (25) 

{ - - i ¢ ; } m - I  =Rrn{ffJG}m-l' (28) 

where R is the R matrix of the mth layer. 
The Rmmatrix can be propagated upward through the 

bulk crystal slab composed of repeating unit slabs with 
indices i = m -  1 . . . .  ,1. Defining the R matrix generally 
by 

i I {-- CG(Z)}i : Ri+I{~)G(Z)}i, (29) 

we have for the ith unit slab 

(i~l 
IIt(zi__I) = ~M~21 

- 

/ 
M22 i < { - i~b~ } i 

M ' I 2 )  ( I ) { ~ G }  i , t  Ri+I 
M22 i 

(30) 

in which I is the usual unit matrix. Equation (30) gives 
the recurrence relation 

t --1 
R i = [(M;1)i  + (1V~22)iRi+ll[(MIll)i + (M12)iRi+I] • 

(31) 

At the selvedge/substrate interface, we have 

I++R ) {i'll i'12) (I){~3G} 0 
P(I +-R) = ~M~l M;2 , R, 

(32) 

where the subscript s denotes selvedge matrices and 

S 1 = (M'll)s + (M'I2)sR1 , 

S 2 = (M~I)~ + ( i~2)sR 1. 
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After some manipulation, we obtain from (32): 

R = - - ( S l  I + S 2 1 P )  -1 ( S l  I - S 2 1 p ) I  + .  (33) 

When evanescent waves with large imaginary compo- 
nents of/C (i) are present, the scattering matrix for even 
a single unit slab or the selvedge may diverge. In this 
case, both the selvedge and the bulk unit slab need to 
be divided into several subslabs and the propagation of 
the R matrix through these subslabs follows exactly the 
same procedure as described by (30)-(31). 

We now consider the calculation of dynamical 
RHEED from an Ag(001) surface using (33). This 
is the system originally considered by Maksym & 
Beeby (1981). To avoid confusion, we will follow their 
indexing system and call all reflections (H, K) with non- 
zero negative-K-value higher-order Laue-zone (HOLZ) 
reflections and all reflections with non-zero positive-K- 
value minus HOLZ (MHOLZ) reflections. All reflections 
having indices of the form (H,0) are called zero- 
order Laue-zone (ZOLZ) reflections. The high-energy 
electrons are incident on the (001) surface along the 
[01] direction, which corresponds to the conventional 
[110] azimuth. In this paper, with the exception of Fig. 
3, we choose to plot the quantity 17zGI rather than the 
experimentally measurable quantity I~Gl2Re(k6/koz ), 
in which G and 0 refer to the incident and re~lected 
beams, respectively. 

Shown in Fig. 3 are two sets of curves 17Z l and 
17zGI 2 Re(k 6 / k  o ). For simplicity in subsequent discus- 
sion, we wl]i rdfer to the former type of curve as an 
amplitude plot and the latter type as a rocking curve. 
The curves were calculated for 20keV using 16 rods: 
(0,0), (4-1,0), (4-2,0), (4-3, 0), (4-4,0), (0, 1), (4-1, 1), 
(4-2, 1), (-t-3, 1). Shown in Fig. 3(a) are plots for the 
(0, 0) rod and in Fig. 3(b) plots for the (1, 0) rod. The 
major differences between the two curves are that in 
the amplitude plot the weak peaks are more pronounced 
than in the rocking curve and that in the amplitude plot 
even the evanescent beam is recorded. For example, for 
the (1, 0) beam (Fig. 3b), for angles of incidence smaller 
than about 29 mrad, k c is pure imaginary, i.e. the beam 
is evanescent. This be~am is therefore invisible in the 
usual rocking curve for 0 < 29 mrad. Since in the present 
study we do not intend to compare our results with 
experimental observations and since conversion between 
these two types of curve can be readily made, we choose 
to use the amplitude plot rather than the rocking curve. 

Having calculated the reflected-beam amplitudes ~G, 
the calculation of the electron wave function can then 
be performed using the two-dimensional Bloch-wave 
approach. In the vacuum region above the surface, the 
wave function is given by (22) while in the crystal it 
is given by (14). The wave function in the selvedge 
and within the substrate can be obtained by propagating 
the vector • downward through the assemblage of thin 
slices with indices i = 1, 2 , . . . .  At the vacuum/selvedge 

interface, we have 

({¢G(z)}) { ]++R ) 
{-i~bb(z)} l = M ' ( z ) \ P ( I  + _ R )  ' (34) 

and, in the crystal, 

'~k+, (z) = M,,(tk)'~,,(z). (35) 

It should be noted that the scattering matrix M k for all 
thin slices have already been calculated in the process 
of calculating R 6. In the present scheme, the calculation 
of the electron wave function therefore does not require 
much extra effort, except for multiplication of some 
2n × 2n matrices. 

RHEED from Ag(001) surface, 20keV, [110] azimuth 
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RHEED from Ag(001) surface, 20keV, [110] azimuth 
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(b) 
Fig. 3. Amplitude plot and rocking curves for (a) (00) rod and (b) (10) 

rod. The curves are calculated for 20 keV incident-beam energy 
using 16 rods. 
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Shown in Fig. 4 are distributions of I~ba(z)[ 2 for the 
(00) and (10) rods, and for an angle of incidence of (a) 
0 = 14 mrad and (b) 0 = 34 mrad, respectively. For 0 = 
14 mrad, the (10) rod is outside the Ewald sphere for 
the vacuum wave vector. The associated wave ~e(z) is 
therefore an evanescent wave in the vacuum region. This 
rod is then a closed channel and no electron flux escapes 
into the vacuum via this (10) rod, as is clearly shown in 
Fig. 4(a). For 0 : 34 mrad, the (10) rod becomes an open 
channel and the electron wave associated with this rod is 
now a propagating wave and the intensity distribution is 
seen to be uniform in the region far from the surface in 
the vacuum. The electron penetration depth is also seen 
to depend sensitively on the angle of incidence, being a 
few atomic layers (Fig. 4a) or many layers (Fig. 4b). 

2.0 

Electron density distribution 
Ag(001), 20keY, [110] 

1.5 

1.0 
Y. 

0.5 

- - -  (00) rod 
............ (10) rod 

0.0 
-10 .0  3{}.0 40.0 

2.0 

0.0 10.0 20.0 
z (~ngstr6m) 

(a) 

Electron density distribution 
Ag(001), 20 keV, [ 110] 

- -  (00) rod 
............ (10) rod 

00 l/ 
I i il 

o o . . . . . . . . . .  .... II :j VIlIV,VIW' Ai  
-10 .0  0.0 10.0 20.0 30.0 40.0 

z (hngstr6m) 

(b) 

Fig. 4. Intensi ty distribution I¢o(z)l 2 for  the (00) and (10) rods. The  
calculat ions are made  for  20 keV inc ident -beam energy,  an Ag(001)  
surface, the [110] beam azimuth and an angle o f  incidence /9 o f  
(a) 14.0 mrad and (b) 34.0 mrad.  

5. Bethe potentials, evanescent 
waves and HOLZ effects 

In the previous section, we have shown that, to achieve 
a convergent dynamical RHEED calculation, a large 
number of HOLZ rods need to be used, including 
evanescent beams such as those associated with the 
MHOLZs. The inclusion of evanescent beams is diffi- 
cult, particularly for those with large negative values of 
F 2. The contributions from such beams are small, but 
they result in Bloch waves with approximate/C values 
of q-i(IFG)2[1/2. From (15), it is clear that since the 
expression for ~ba(z ) now includes exponential terms 
like exp[(l_r2[)~/2)], any finite numerical error in the 
Bloch-wave excitation amplitude CZ (i) and eigenvectors 
C(o0 will be exponentially amplified, and this is the diver- 
gence problem encounted in RHEED theory (Zhao et aL, 
1988). On the one hand, we know that the contributions 
from individual evanescent beams corresponding to large 
I F~I are small while, on the other hand, the collective 
contribution from all the evanescent waves and HOLZ 
rods is not negligible. The inclusion of evanescent beams 
with large lie[ values is difficult because it requires very 
small slice thickness and therefore much more computer 
time, as well as an increase in the matrix size consequent 
on the inclusion of weak beams. 

In this section, we will show that the Bethe potentials 
provide an ideal way for dealing with the evanescent 
beams and HOLZ effects. The Bethe potentials were first 
introduced by Bethe (1928) in the two-beam case in or- 
der to take into account the effects of weak beams on the 
strong beams. Although this method has been success- 
fully used in transmission electron diffraction (TED) for 
interpreting critical-voltage effects (Uyeda, 1968), and 
more recently for many-beam TED calculations (Zuo, 
1993), its potential importance for dynamical RHEED 
calculations has not yet been fully realized. Recently, 
Ichimiya (1988) discussed qualitatively, using Bethe 
potential ideas, the effects of diffusely scattered beams 
and surface reflections on RHEED rocking curves. In 
this section, we re-derive the Bethe potentials and in- 
corporate them into our two-dimensional Bloch-wave 
formulation. We show that they provide a convenient 
and powerful means for dealing with evanescent waves 
with large imaginary parts of the wave vector and much 
of the HOLZ effects. 

We start our derivation of the Bethe potentials from 
the fundamental equation (8), changing the general suf- 
fixes G and H to J and L, in view of the specific use of 
G and H introduced below: 

( E 2 -  Fj2)Cj- E Uj_L(Z)CL = 0. (36) 
L~J 

Suppose we may separate the diffracted beams into two 
groups, namely a set of n strong beams {G} and a set 
of m weak beams {H}. Explicitly, we can re-write the 
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above fundamental equation as 

-u~,_~ ~ - r ~  . . . .  -u~ ,_ ,  -u~,_, ,  . . .  
• . . • , , 

• 

• 

- v  ~ - ~  ~ . . . .  lC ~ _ _ - - F  n --Un_n,  . . .  
- u , _ ~  - %  ~ . . . .  - %  , ~ = - r  ~ 

- -  - -  H ! • ' •  

• • . • • , 

( C~ 

C G , 

(37) 

Expanding the lower half of the equation, we obtain ( )1 
. . . .  

. . . .  )/Cc,) 
' UH'. -G'  X UHi -G  

(38) 

Suppose that the major features of the diff action 
problem in the slice are determined by the Bloch waves 
associated with the set of strong beams, then for the set 
of weak beams we may make the following approxima- 
tion in (8): 

K~2 - FD '~ K2 - FD, (39) 

and this approximation is adequate either for large angles 
of incidence such that KS z = K or for beams with large 
values of/-'2 w Substituting (38) and (39) into (37), we 
obtain a matrix equation for the set of strong beams {G}: 

) 
(40) 

_(v~ ,  G + zau~ G) lc2 _ (v2, + A v D  ) 

x ' = O, 

in which 

A?o 

U G  t _H t 
= UG i i - n  

o 

× - , _ .  K z 2 - V ~ ,  

UH' -G '  X UH':--G . 

"••1• 

--1 

(41) 

For a dynamical RHEED calculation involving n 
strong beams and m weak beams, the original (m + 
n) x (m + n) matrix equation (37) is then reduced to 
an n x n matrix equation (40)• The calculations of A F  2 
a n d  A U 6 o  , involve the calculation of an m x m matrix 
inversion to (41). 

Alternatively, we can rearrange (38) to give 

{CH} = ( I -  UH)-IUHo{C6}, (42) 

in which the matrices U n and UH6 are given by 

o v ._ . , l (K: -~)  ••.)  
u .  = v . , _ . l ( K  ~ - r ~ , )  o • 

(43) 

and 

( u. ol(x~- r~.) %_~,/(x2_ r~) 
Uw_~, l (K ~ -- r~,) ) , 

(44) 

respectively• For a general matrix U, we can always 
make a similarity transformation of the matrix 

U = F{Ai}diagr -1, (45) 

in w h i c h  {)~i}diag is a diagonal matrix. Suppose, for all 
i, )~i ( (  1, then we can use the approximation 

(I- Un) -1 = r ( l -  {) , i}n)- lF -1 "~ I (46) 

to obtain the well known expressions for the Bethe 
potentials (Bethe, 1928) in (40): 

Ar~ = E IUc_HlU/(Kz 2 -- r ~ ) ,  
H 

AU~, = E(U~_.U._~,)/(~ ~ - rD). 
H 

The Bethe approximation (46) requires that 

Irz z - r ~ l  > I g ~ _ . l  

(47) 

(48) 



LIAN-MAO PENG, S. L. DUDAREV AND M. J. WHELAN 917 

for all weak beams {I-I} and all interactions between 
the weak beams and the strong beams {Uc_H}. Since 
K 2 is always positive, the inequality (48) clearly shows 

z 
that the approximation is more likely to be valid for an 
evanescent beam for which F 2 < 0 than for a propagat- 
ing beam with F 2 > 0. 

If we have the further inequality that 

I/-21 >> gz 2, (49) 

we then obtain 

z a v  2 ~_ - E ( 1 / V ~ I ) I U G _ . [ 2 ,  
H (50) 

AUGG, "2_ - ~-'~(1/F2H)UG_HUH_G,, 
H 

and this is the expression given by Beeby (1992). The 
Beeby approximation (49) is valid only for small angles 
of incidence, i.e. for small K .  It is therefore more 
restricted than the Bethe approximation. The latter can 
be applied to the glancing-angle RHEED and large-angle 
TED diffraction geometries. 

The domain of validity of the Bethe approximation 
(48) is shown schematically in Fig. 5. The quantity 
plotted in the figure is S(H) ,  given by 

S ( / - / x )  - -  . F  2 - -  g 2 ~--- - -  H 2 - -  2K.  H 

= - ( 2 K H  + H  2 + H  2 y x ) '  ( 5 1 )  

where the x axis is defined to be perpendicular to the 
incident beam and the y axis to be along the beam 
azimuth. For ZOLZ beams, we have K .  H = 0, 
for positive HOLZ beams K .  H < 0, and negative 
HOLZ beams K .  H > 0. The S(Hx) curves associated 
with the positive HOLZ beams appear above the curve 
associated with the ZOLZ, and those associated with 
the minus HOLZ beams appear below the ZOLZ curve. 
The two solid horizontal lines in the figure divide the 

S 

/ / ,  

O Weak beam 

Fig. 5. Schematic diagram showing the domain of validity of the Bethe 
approximation. 

space into three regions. The regions above and below 
the lines approximately satisfy the Bethe approximation 
(48). The two dotted horizontal lines are boundaries 
of the Beeby approximation. The regions above and 
below these dotted lines approximately satisfy the Beeby 
approximation (49). Fig. 5 clearly shows that the domain 
of validity of the original Bethe approximation embraces 
that of the Beeby approximation, and in the present paper 
we will consider only the Bethe approximation. 

Fig. 5 also shows that, for ZOLZ and MHOLZ beams, 
only a small number of low-order beams need to be 
treated fully. The higher-order beams lie below the 
lower solid line and can be treated approximately using 
the Bethe potentials. For HOLZ beams, the situation 
may be different. It is seen that while some low-order 
HOLZ beams with small values of H satisfy the Bethe 
approximation, some intermediate-order HOLZ beams 
need to be treated fully. It is also clear that the number 
of beams that need to be treated fully is smaller for 
MHOLZs than for HOLZs. 

An alternative view of the domain of validity of the 
Bethe approximation is illustrated in Fig. 6. This figure 
shows the Laue circle (the intersection of the Ewald 
sphere made by the plane parallel to the crystal surface 
at the end of the wave vector of the incident beam) and 
the two-dimensional reciprocal lattice. We can re-write 
the quantity S as 

s = _ - I K ,  + n i l .  (52) 

In this expression, the radius of the Laue circle is given 
by K t and the distance between the reciprocal-lattice rod 
H and the Laue circle is K t - I K / +  HI. It should be 
noted that, to correct for the effect due to a 'weak beam' 
using the Bethe potentials, the ratio between Uo_ H and 
F 2 - K 2 must be very small. Even though a beam may 
be very weak owing to the weakness of its interaction 
with all other beams (i.e. Uc_ H < <  Uc), if the rod lies 
on or close to the Laue circle this beam cannot be treated 
as a weak beam by the method of Bethe potentials. The 
domain of validity of the Bethe approximation is given 
by the region outside the two concentric circles above 
and below the Laue circle. 

_ o , z  

z o L z  

- . / ~  .~ / ~ ~ % ~ ~  ,-t mOLZ 

k % 

0 Weak beam 

• Strong beam 

Fig. 6. An alternative view of the domain of validity of the Bethe 
approximation and the construction of the Laue circle on the xy 
plane. 



918 APPROXIMATE METHODS IN DYNAMICAL RHEED CALCULATIONS 

Shown in Fig. 7 are the absolute beam amplitudes 
InGI for (a) (00) and (b) (10) rods. The three curves 
shown in this figure are calculated using 16 and 41 
rods. The curve labelled '16rods + Bethe potentials' are 
calculated using 41 rods, but of these 41 rods only 9 
ZOLZ rods and 7 first-order HOLZ rods are treated fully. 
Effects due to the remaining 25 weak beams are incor- 
porated using the Bethe potentials. The 16 strong beams 
are (0,0), (-F1,0), (-F2,0), (+3 ,0) ,  (+4 ,0) ,  ( - 1 , 0 ) ,  
(--1, + l ) ,  ( - 1 ,  +2),  (--1, +3),  and the 25 weak beams 
are (1,0), (1 ,+1) ,  (1 ,+2) ,  (1 ,±3) ,  (+2,0) ,  ( ± 2 , + 1 ) ,  
( + 2 , + 2 ) ,  (±3 ,0) ,  (-t-3,±1) and (±4 ,0) .  This figure 
shows clearly that the Bethe potential method works al- 
most perfectly in correcting for the effects of evanescent 
waves and HOLZ reflections. 

For a convergent calculation when many rods of the 
reciprocal lattice are involved, the procedure that is most 
computer time consuming is the diagonalization of the 
matrix equation (8). For a general n x n complex matrix, 
the time need to diagonalize the matrix is proportional 
t o  n 3.  On the other hand, the calculation for the Bethe- 
potential method is proportional to n. Assuming that 
among the n rods m of them need to be treated fully, the 
computer time needed is proportional to m 3 -Fn. The time 
saved by the use of the Bethe potentials is approximately 
proportional to n 3 - -  m 3 - -  n. It should be noted that this 
is only a rough estimate. The actual computer time used 
for the diagonalization of a matrix depends also on the 
detailed structure of the matrix. 

RHEED from Ag(001) surface, 20keV, [110] azimuth 

0.8 

~6 
0.6 

E 

0.4 

0.2 

0.0 
0.0 

- - -  41 rods 
• 16 rods + Bethe potentials 

e ~ o  16 rods 

20.0 40,0 60.0 80.0 
Angle of incidence (mrad) 

(a) 

RHEED from Ag(001) surface, 20keV, [110] azimuth 

0.5 

• o 0.4 
2 

__~0.3 

o2 

i~ o.1 

o.o 
0.0 20.0 

- -  41 rods 
,, 16 rods + Bethe potentials 

o ~ o  16 rods 

40.0 60.0 80.0 
Angle of incidence (mrad) 

(b) 

Fig. 7. Variation curves of ]~GI for (a) the (00) rod and (b) the (10) 
rod. Calculations in this figure are made for 20 keV incident-beam 
energy, an Ag(001) surface, the [110] beam azimuth, and using 16 
rods, 41 rods, and the Bethe potentials for 16 strong beams and 25 
weak HOLZ beams. 

6. RHEED from a reconstructed surface 

In this section, we consider dynamical RI-IEED cal- 
culation from a reconstructed surface. In general, the 
two-dimensional rods of the reciprocal lattice in the 
plane parallel to the surface describing the periodicity of 
the substrate and the selvedge will not be identical. Since 
the structure of the substrate is often a known structure, 
it may then be used as the basis structure. In what 
follows, we shall use the set of reflections {G} to denote 
the substrate rods of the reciprocal lattice in the plane 
parallel to the surface and call it the fundamental set. The 
general set of surface rods {Gs} may be represented in 
terms of the fundamental set {G}: 

{ G s }  = { G ,  G + S l . . . .  } ,  ( 5 3 )  

RHEED from Si(001) 2Xl surface, 20keV, [110] azimuth 

o8 t 
Full matrix 

[ |  o Block matrix 
. . . . . . . . . . .  

i 
0.6 

Em~ 0.4 ~/. ..... 

~ 0.2 

0.0 
0.0 20.0 40.0 60.0 

Angle of incidence (rnrad) 
60.0 

Fig. 8. Amplitudes of the specular beam reflected from an Si(001) 
2 x 1 surface. 20 keV high-energy electrons are incident at the 
surface along the [110] azimuth. The three curves shown in this 
figure are calculated using 5 fundamental ZOLZ rods and 5 surface 
rods, based on a full scattering matrix M, a block scattering matrix 
M t and the Bethe potential method, treating the 5 fundamental rods 
as strong beams and the 5 surface rods as weak beams. 



LIAN-MAO PENG, S. L. DUDAREV AND M. J. WHELAN 919 

in which {si} is a set of surface rods lying within the 
first Brillouin zone of the fundamental rods. 

We now consider the (001) surface of silicon as 
an example. After appropriate treatment in ultra-high 
vacuum, this surface reconstructs as a 2 × 1 structure in 
which the surface unit-cell edges are parallel to those in 
the (001) plane of the bulk silicon crystal, with the lattice 
parameters a s - - 2 a  9, b s = b b. In reciprocal space, we 
have a*s = a~,/2, b*s -- b*o. The complete set of surface 
reflections may then be written as G s -- {G, G + a~/2, 
G -  a~,/2}, i .e.  s I = - s  2 = a~,/2. 

It is a general feature of surface reflections that in 
most cases they are relatively weak compared with 
fundamental reflections• It was therefore suggested by 
Ichimiya (1988) that effects from surface reflections 
could be discussed using Bethe potentials. Shown in 
Fig. 8 are three curves of 17%ol from the Si(001) 2 x 1 
reconstructed surface for 20keV and the [110] beam 
azimuth, using the Yin & Cohen (1981) model for 
the 2 × 1 reconstructed surface of silicon. The curve 
labelled 'full matrix' is calculated treating the ZOLZ 
rods fully, including the superlattice reflections• The 
curve labelled 'Bethe potentials' is calculated treating 
only the fundamental rods by the full-matrix method, the 
other surface rods being treated by Bethe potentials. This 
figure clearly shows that the method of Bethe potentials 
does not work well for ZOLZ surface reflections• This 
result is indeed expected because although the relevant 
Fourier coefficients U~+s,  for surface reflections are 
relatively weak, the d i s ~ c e s  of many of the ZOLZ 
surface rods from the Laue circle are not large (Beeby, 
1992)• The Bethe-potentials method isVtherefore not well 
adapted for these reflections. 

Although the Bethe potentials are not applicable for 
the many ZOLZ surface reflections, much of the com- 
putation of the substrate scattering is redundant and we 
shall now consider the substrate scattering in more detail. 
In the substrate, we have several groups of reflections 
(e .g .  {G}, {G + sl}, . . . )  propagating independently• 
This is because the coupling between these groups of 
reflections is zero in the substrate, i .e .  U . . = 0 
for all i ~ j. This characteristic feature ~o-~S'~u-~trate 
diffraction may be explored more fully as has been 
done in the transmission geometry of electron diffraction 
(Peng & Whelan 1991). 

The fundamental equation (8) can then be expressed 
in a block form: 

in which 

0 ) 
= 0 ,  (54) 

{Ao}Gt_/ (K~2 2 = - r a ) e ~ , ,  - t b , , ( 1  - e~,,) 

{Ai}G_I_si,H+s i .-_- (]C2 2 - r & s i ) e ~ ,  , - u ~ , , ( 1  - e~,,) 

and 

{c o} = ..... {c/}= 
q-si 

(55) 

Suppose now that we have a total of n fundamental 
reciprocal-lattice rods, then the matrix equation 

AkC k = 0 

gives n distinct eigenvalues j(.2(i) C(k i) '"k ' n eigenvectors 
(i -- 1, . . . ,  n) and 2n distinct Bloch waves. The com- 
plete eigenvectors can be constructed from these sub- 
eigenvectors as follows: 

= / { o }  

forj = i -- 1 . . . . .  n 

for  j = i + n 
= n + l  . . . . .  2n 

(56) 

The C matrix as defined in (18) now has the form 

C = 

f {{~}o. 

{ {KT(i!c~d) } 

o } 
{C~ i) } 0 

o ...} 
]~ !i)C!i) I 

1 1 . J  

••• / (C~ i) } 

0 
1C!i)C~.i) ~ 

- -  1 1 -J  } (57) 
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If we re-write the vector • as /{¢o}) , .  (58) 

the total scattering matrix then has a block form: 

M' = {M1} , (59) 

For a thin slice the matrix associated with the eigenvalue 
equation (8), 

{A}c H 2 = I~OH + UOH (1 - ~OH)' 

is Hermitian. The associated eigenvectors then satisfy 
the following orthogonal relations: 

E C~(i)C~ ") -- ~GH, E C~(i)C(~ ) - ~ij" (61) 
i G 

An analytical expression for the scattering matrix 
defined in (21) can be obtained (Peng & Whelan, 1990): 

M(t) " -  C ' ] [ ' C - 1  ~ -  ii }1 C(j) sin 1C(i)t Ch(i)/IC(i) 
• (62) 

in which 

{M/~} = { )} {_]~(ki)C(ki ) } 

{{exp(ilC(ki)t)} {0} ) × 
{0} {exp(-iK~k(i)t) } ) )_1 

x { (60) 

It should be noted that the vector ~ '  and scattering 
matrix M ~ as defined here differ from those defined in 
(17) only in indexing notation, and they can easily be 
transformed to the form defined in (17). The points in 
Fig. 8 denoted by circles have been calculated using 
the block scattering matrix M ~. These points are seen 
to coincide with the curve calculated using the full 
scattering matrix M. Suppose we have a total of n 
fundamental rods and m sets of surface reflections. Then 
the computer time for calculations based on the full 
scattering matrix M will be roughly proportional to 
(nm) 3. On the other hand, if the block form of the 
scattering matrix M ~ is used, the computation time will 
scale as m x n 3. When m is large, such as for the Si(111) 
7 x 7 surface, the saving in computer time will be 
substantial. 

7. Perturbation treatment of 
the anomalous absorption effect 

For purely elastic RHEED, the electrostatic potential 
U(R, z) is real. From the fitting parameters aj, bj as given 
by Doyle & Turner (1968), an analytical expression for 
U6(z ) can be obtained [see for example Appendix B of 
Peng (1994)], and for a real potential U_G(Z ) = U*6(z ). 

For RHEED from the surface of an absorbing crystal, 
the optical potential becomes complex, i.e. Uc(z ) in 
the non-absorbing case is replaced by Uc(z ) + ilf~(z). 
We assume first that the absorption is dependent on z 
only, i.e. /f~(z) = 0 for all G ~ 0. The inclusion of the 
mean absorption ilfo(Z ) in the eigenvalue equation (8) 
then introduces only a shift to the eigenvalues and the 
eigenvectors remain unchanged. Assuming that K~ (i)2 a re  
solutions of (8) for elastic RHEED, we then have 

K~/(i)2 = K~ (i)2 --~ iU~o(Z), (63) 

when iUo(z ) is incorporated in (8). 

RHEED from Ag(001) surface, 20keY, [110] azimuth 
1.0 

0.8 A oo 

..=_ 
~ 0 . 5  

i 
= o2 

0.0 , i . i 

0.0 10.0 20.0 

, Full absonption 
............ Mean absoq~tion 
- -  Perturbation method 

30.0 40.0 50.0 60,0 70.0 80.0 90.0 
A n g l e  o f  incidence (mrad) 

Fig. 9. Amplitudes of the specular beam reflected from an Ag(001) 
surface. The incident-beam energy is 20 keV and the beam azimuth 
is along the [110] direction. The three curves in the figure are cal- 
culated using the full dynamical theory (labelled 'full absorption'), 
the mean absorption model (labelled 'mean absorption') and the 
perturbation method (labelled 'perturbation method'). 
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Shown in Fig. 9 are three curves calculated using the 
general absorption model as discussed in §3 (labelled 
'full absorption'), the mean absorption model (labelled 
'mean absorption') and the perturbation method (labelled 
'perturbation method'), which we will discuss below. 
The anomalous absorption effect resulting from iUg on 
the RHEED rocking curve is noticeable. 

While the anomalous absorption effect is not neg- 
I ligible, it is generally true that U o << Uo. This fact 

suggests that the anomalous effect may be treated using 
a perturbation method such as has been successfully ap- 
plied in the transmission (THEED) case (Hirsch, Howie, 
Nicholson, Pashley & Whelan, 1965). To a first-order 
approximation, we assume that the inclusion of Ug(z) 
in the eigenvalue equation (8) does not change the 
eigenvectors appreciably. Letting 

K~t(i) 2 = K~(i) 2 _~_ A/I~(02, 

we have from (8) 

A/c(i)2c~') q- (/C (i)2 _ fiG 2 --iUlo)C(Gi) 

- E Uo- t - iC~)-  i E U'o-t-ICI~ ) = O. 
tt¢~ t4¢~ 

Pre-multiplying this equation by C~ (i), summing over 
all G and using the orthogonality relations (61) and 
equation (8), we then obtain 

, ~ K ]  (i)2 i E f"*(i)/'It (,7"~ f "  (i) (64)  
" ~ G  v G _ H ~ , ~ / , . . H  " 

G 

The third rocking curve in Fig. 9, labelled 'perturba- 
tion method', is calculated using (62) but with modified 
eigenvalues calculated using (64): 

K~t(i) _. [K~(i)2 _1_ AK~(i)211/2 (65) 

It is seen that the perturbation method works reason- 
ably well for this particular case but there exist some 
noticeable discrepancies. In principle, the accuracy of 
the perturbation method may be improved by including 
not only the perturbation of the eigenvalues but also 
of the eigenvectors and by including higher-order terms. 
However, calculation of these corrections demands more 
computer time than that required using full dynam- 
ical theory. It is therefore numerically inefficient to 
use higher-order terms in dynamical electron diffraction 
calculations, except when it is intended to invert the 
structure directly from a reference structure (Peng & 
Dudarev, 1993a,b). 

8. Conclusions 

Dynamical RHEED calculations have been made using 
two-dimensional Bloch waves. This approach is appli- 
cable to a general complex optical potential. It is found 

that to achieve a convergent result many rods of the 
reciprocal lattice, including those that lie outside the 
Ewald sphere (i.e. those giving rise to evanescent waves) 
need to be included and HOLZ effects are not always 
negligible. 

The Bethe potentials have been incorporated into 
our two-dimensional Bloch-wave formulation. We have 
shown that the use of the Bethe potentials is very 
efficient in dealing with HOLZ and evanescent rods that 
lie far away from the Laue circle, and that the saving in 
the computer time is typically more than 15 times. 

For RHEED from a reconstructed surface, we have 
shown that the Bethe potential method is not always 
applicable for dealing with weak surface reflections lying 
on the ZOLZ. To reduce the amount of computation, 
a new method has been developed utilizing the block 
structure of the scattering matrix of the substrate. The 
results obtained using this new scheme are identical to 
those obtained using full dynamical RHEED theory. The 
computation efficiency is improved by about 40 to 60%. 

The anomalous absorption effect has been shown to be 
important in RHEED. Standard perturbation theory has 
been applied to correct for this effect. It is found that in 
general this perturbation method works reasonably well 
but does not have high accuracy. The computation speed 
is increased by about 30%. 
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